Text Box: Volume 4, Number 3, March 2023
e-ISSN: 2797-6068 and p-ISSN: 2777-0915

 


IDENTIFICATION OF STUDENTS' CONCEPTUAL AND PROCEDURAL ERRORS IN SOLVING PROBLEMS IN THREE-DIMENSIONAL MATERIAL

 

Wandy Suhady, Yenita Roza, Maimunah

Mathematics Education, Universitas Riau, Indonesia

Email: [email protected]

 

KEYWORDS

Conceptual errors, Procedural errors, three dimension

 

 

ABSTRACT

Low math skills of students can be seen from the understanding and the assignment of students to a material.  One of the clues to determine the extent to which students master the material is to analyze student's mistakes in working on. The study aims to describe the kind of conceptual errors and procedural errors in the student answered question on the three-dimesional material. This study used descriptive qualitative approach. This research subject is class XII IPA SMAN 1 Bengkalis. Techniques of data collection using interviews and documentation written test. The object of this study was grade XII IPA 1 SMAN 1 Bengkalis which amounted to 26 students. This research result is the kind of mistake that most people do students is a conceptual mistake in working on the three dimensional material is 52%.  While its procedural errors as much as 48%. Conceptual errors and  procedural errors occurred because  of the low ability of abstraction and visual abilities in students in answering the questions that are hard to describe and determine the distance to a point on the field of three dimensional material. Low math skills of students can be seen from the understanding and the assignment of students to a material.

 

INTRODUCTION

The characteristic of mathematics is to  have abstract objects of  study,  namely facts, concepts, operations and principles (Ananda et al., 2018). Errors of fact in mathematics include: symbols, notations and rules of  an operation as  well as errors in writing known   and asked.   Concepts include abstract ideas  for classifying an object and explaining which are examples and not examples. Concepts in mathematics are a form  of  idea ideas related to the  properties of an element (Zulfah, 2017).  Operations in mathematics include the rules of working on a calculation.  While the  principle of mathematics  is the  relationship between several concepts in mathematics  that are composed of  facts and    concepts related to operations in   mathematics.   On  mathematics subjects all material have a relationship with each other.  Mathematics is a  structured science that requires basic knowledge which is a  prerequisite for subsequent abilities. One of  the  mathematical materials in  K13 is the  triple dimension, especially in the  distance sub-material between fields (Aisyah, 2019).

Three-dimensional material is   difficult  to   understand because it is abstract and students' lack of ability to describe three-dimensional buildings (Novita et al., 2018).   Problems in dimension three require not only skills (psychomotor) but also must have thinking  and reasoning power. This is  the cause of students' mistakes in answering three-dimensional  questions (Alghadari et al., 2020).  Students must be able to use abstraction skills in solving three-dimensional  problems (Utari, 2019).  The ability of abstraction in question is a   person's ability  to  think logically using symbols (Yuniyanti, 2012).  In addition to abstraction skills, it  also requires  visual skills or spatial abilities of   students in answering questions on three-dimensional material.  Visual (spatial)  ability  is the ability to imagine a shape of  an object from  different points of view in solving geometric problems of three dimensions,  as well as the ability to manipulate and rotate from an element (Febriana, 2015). This is supported by  an interview  with a mathematics teacher  at  SMAN 1 Bengkalis. The teacher  pointed out that it is often difficult for  students to describe the   point-to-line distance and  the   point-to-plane distance. The teacher  stated that students do not master the steps of  painting distances in space, opeconstellations of fractions and root shapes often occur  miscalculations.  Students also have difficulty understanding the    axioms  contained in  dimension three.

Researchers also interviewed several students related to  three-dimensional  material.  They revealed that it is difficult to imagine the process of determining the  distance in space, students also often make miscalculations  and do not understand the questions well.   So from  this problem, the  researcher wants to identify the    type of student error  in solving the  problem in  the  three-dimensional  material.  Researchers gave an initial identification test  to students of  SMAN 1 Bengkalis who had followed the  three-dimensional  material in  the form of a  description test.   The given question   is: A 16-rib long  ABCD cube.  Determine the distance of  point A to BDE.

Figure 1.  Student Answers To Question Number 1

The results of  student work have not been able to  describe the distance between a  point and a field.  The concept of  the distance  between point to field is not  yet understood by students  , this  is illustrated by the  steps in determining the  distance of a  point to   a field that   students do not work on.  The error contained in this  student's answer  is a type of conceptual and procedural error.   Students should understand the  concept of  point-to-plane distance   , namely by determining the  penetrating point of  the  point against the plane so that it isnot straight.   The second problem  is known to the ABCD cube. EFGH rib length 8 cm.  Of course, the distance of  point C to the AH  line.

 

 

 

 

 


Figure 2.  Student Answers To Question Number 2

It can be seen from the  picture above that students  cannot describe the  distance of the point to the line.   The step  of the  step to  draw the  distance of the point to the  line has not been mastered by the student.   Students tend to connect points to lines regardless of whether the  line  beam is perpendicular  or not.  Students also have a  weak ability to relate the  concept of  the area of a  triangle to  determine the  distance of a point  to a line.

Tes initial identification  and information from the  teacher can be concluded that the   student  has difficulty dalam understanding the point-to-line distance  and  the   point-to-plane distance   so that   the student makes a mistake .  These errors include conceptual and procedural errors.   The conceptual error  intended here is that students have not been able to understand the concepts of point-to-line  distance and  point-to-plane  distance   in space.  Meanwhile, the  procedural error in question is that the  student has not understood the  step of determining and painting the  distance between the point to the  garis and  the distance of the  point to   the plane in space.

Students' low mathematical ability  can be seen from students' mastery  of a material. One of them is by giving tests or questions about the material to students (Solfitri & Roza, 2015). To find out the  mastery of the material, it is necessary to indetify  students' mistakes in answering questions.  Error identification  is a diagnostic assessment in helping teachers recognize the types of mistakes  made by  students by giving reasons for a (Anggraini et al., 2018). Class identification can be done by observing the  student's answer and then determining the type of mistake made by the student.   In other words, the identification of errors can be done by relying on the criteria in afault analysis (Yusnia & Fitriyani, 2017).  The purpose of  identifying errors is  so that there is an  evaluation for educators to do a improvements in  the teaching and learning  process,   for example using media to bridge abstract things  in three dimensions  so that they can be easily understood (Agustin & Linguistika, 2012).

Kurniasari (2013)  stated that there are 3  student errors  in  doing geometry problems, namely: (1)  abstraction errors, including: students' inability  to abstract the  determination of  distance in   the plane and angle between the  line and the plane.   (2)  Procedural errors include the  calculation of the  root form  and the  use of the phytagoras formula.  (3) Concepts  include: errors in understanding  the concept of  distance, concepts of angles and errors in   understanding  right  triangles  in space.   According to Hidayat et al (2013) who stated that students  ' mistakes in answering three-dimensional questions  are divided into  4 types, namely: (1) types of  factual errors, namely   students   lack of scrutiny in  completing the answer (2) type   of  misconception, namely  the occurrence of  student misconceptions regarding  the distance of  two parallel lines  in space (3)    type of operation error, namely  students do not understand in       squaring the shape of the root   fraction, the  summation of the  shape of the root and the addition and division of   the form of fractions (4) Types of principle errors  i.e. the swa never does the  type of story question  about the  angle between the  two fields, so in the process  of identifying the  question until the student's final answer   made a mistake.

Based on  the opinions above,  according to researchers, mathematical errors are categorized into 2 types, namely conceptual and procedural errors.    Conceptual errors  are mistakes made by  students in interpreting terms, facts, concepts and principles.    Procedural errors  are errors in drawing up  systematic steps to answer a problem.   The purpose of  this study was to identify the  types of  conceptual and procedural errors of  students in  solving  the problem of distance in  space in class XII of SMAN 1 Bengkalis. 

 

RESEARCH METHOD  

The research implemented at SMAN 1 Bengkalis with subject research be 26 student. Technique Collection data Consists above test Written, interview and documentation. Instruments that Used at research .ini be test Written and Researchers as instrument main. Deep test Validity data so Done technique Trianggulation method that is look for consistency data result test and interview. According to Miles and Entertain deep (Hanifah, 2014) to Determine error Done with analysis data that Done Refers at Reduction data Serving data and conclusion. To understanding procedure research so Researchers make design research as next.

 

 Data Reduction:

 

1.  Data Collection

2.  Interview

 

Data Presentation :

 

1.  Provision of  UN Questions

2.  Scoring

 

Conclusion

1.   Error Type Assignment

2.   Providing solutions

 
 

 

 


Figure 3. Research Design

Students' difficulty  in answering three-dimensional  material questions. At  this stage also  the researcher provides an initial diagnostic test to support the  information from the  researcher's interview with the teacher.  At the stage of  presenting data, the researcher provides a description test in the form of 4  UN questions in accordance with the  indicators that have been made by the  researcher.  Researchers examine students' answers and then provide scores based on scoring guidelines.  At  the  conclusion  stage,  researchers group the  types of student errors,  namely  conceptual and procedural,  and then analyze the   errors.   In addition  to  being analyzed, researchers provide solutions to solve problems  faced by students in  answering questions in three-dimensional material.

 

RESULT AND DISCUSSION

The presentation of data from  student  test results to determine student errors  in  three-dimensional material is described in the  following table.

 

Table 1. Percentage of True and False Answers from Test Results

 

No

Number of Students Who Answer Correctly

Percentage (%)

Number of students who answered incorrectly

Percentage (%)

1

22

84.6

4

15.4

2

18

69.2

8

30.8

3

12

46.2

14

53.8

4

8

30.8

18

69.2

 

The test results  from the  table above   illustrate that the most  students  answered incorrectly on question number  4, namely 18 students with a percentage of 69.2%.   Question number 4 has a competency achievement indicator (GPA) determining the  slice of the  building space through the ui point.   Question Number 1 is  the most answered  correctly by students  , with  22   students answering  correctly with a  percentage of 84.6%.  So  the  questions related to  the  slice of building space are  the most difficult questions for students.

After getting various mistakes made by  students such as table 1.  Furthermore, the    grouping of errors was made in percentage numbers  of  26 students.  Those percentages are presented in the following table.

 

Table 2.  Student Error Percentage By Error Type

No Problem

Misconceptions

Procedural Errors

1

10.34

6.67

2

20.69

13.33

3

27.59

40.00

4

41.38

40.00

Sum

100.00

100.00

 

Students make a lot of  misconceptions  on determining the slice of the space.  It can be seen that  question number 4 has  the most   misconceptions by students, namely 41.38%.  As for procedural errors, the   most occurs  in questions number 3 and 4,  which are 40% each.   This  suggests that students make a lot of   mistakes on the question of   point-to-field distance procedures   and space building wedges.  In addition, students do not understand the concept of  drawing the  expansion of lines and planes in a space.    There are frequent misconceptions in  connecting points in one plane.  Students tend to connect two  dots that are not a plot.  Students also  lack understanding of the  concept of the affinity axis in helping to paint a space.  For procedural  errors  students do not understand the steps in painting  the distance of points to planes so there are often  errors in  painting    orthogonal  translucent points  to the field.  After calculating  student errors, the  next analysis of  the types of student errors is carried out, namely conceptual and procedural   errors.   This analysis was carried out for students  who did not reach KKM, namely 77.

 

Conceptual Error

The figure below  is a form of conceptual error made by  students in answering question number 2


Figures 4.  Examples of Student Mistakes on Question Number 2

The conceptual error  seen from the student's  answer above is  that the  student is wrong in determining the  distance of  the point to   the line.   Students use a triangular approach to determine their distance.  Students create a distance from point A  to BG by creating an  ABG  triangle then project point A  right in the middle of the  base  of the  BG  triangle. If you look at the  computational  segi  students  can already operate ranked numbers and are already able to use the phytagoras theorem.  Students should  understand the  concept of         point-to-line distance, which  is the  distance of a point  to a perpendicular  (orthogonal) line when the  point is  illuminated by the  line.

 

 
Ability Abstraction deep Determine distance point to line still weak for student. Student not understand in a comprehensive understanding light that upright straight towards a line. Debilitatin. Another student  is that  students do not understand the approach that needs to be used in  solving in determining the  distance of a point   to a line.   Almost all students  answer this  question  using  the triangle approach and  Phytagoras theorem even though students can use   it directly if they understand the  concept of point-to-line distance. Another conceptual error  is seen in  the students' answers in answering question number 3.


Figures 5.  Student Answers to Question number 3 Number 4

 
                                        

 

For question number 3a determining the distance of point C to the BDHF field, students have an error in painting the  distance of  point C   to the   BDHF  field.  Students assume the  distance of point C to the  BDHF field is C to the middle of HB.   The computational process  is also a problem for students.  Students consider HD to be the  diagonal  of space and HB as the side of the cube.  Most students are wrong in representing the field taken to  determine the  distance of the  point to the field.    Students should  first  create a  BDHF field  and project a C point onto the field BDHF with manner join point C to point A.

Question number 3b, students  cannot paint the distance of  point E to the BDG field.  Direct students replied that the  distance of  the point E to the  BDG plane is 1 of the  diagonal length of the space.  Student must paint the  translucent point of the point E  into the   plane  of the   orthogonal BDG,  by connecting the point  E to C and connecting  the  midpoint  of  the BD e.g.   point  O to  point G.   Furthermore the  intersection between  the OG and EH lines  it is the  distance between  the  point E to the BDG plane.   Most students who do not reach KKM aredoing the same  thing.  Students are unable to paint distances between a  point and a plane.   So the researcher concluded students' visual and abstraction skills  are still lacking and the understanding of    the concept of   point-to-field  distance  has not been well understood by students.

 

Procedural Errors

 The figure below  is a form of conceptual error made by   students in answering question number 2

 

 

 

 

 

 

 

 

 

 

 

Figures 6.  Student Answers to Question Number 4

 

 

Students’ answer at above show that student less understand steps deep Determine Slices wake up room that Formed by point P, point Q and point R. Student direct join third point aforementioned and direct conclude that field such is the that become Slices triangle. Student join two fruit point that not a plot that is point P and point R. To point P and point Q student already true because dots aforementioned a plot. Then student also doubtful deep paint Expansion lines and field. Student not use Approach axis Affinity deep Determine slicean wake up room. Whereas Approach .ini very important to help Depicts Slices wake up room. Should student must understand step- step deep paint Slices wake up room Including; (1) connecting  dots that are a plot, (2) expand lines  and fields as needed, (3) painting the axis of affinity< and (4) painting slices of wake up space. Researchers see that students' abstraction and visual abilities are still low. It is seen that most students are not able to paint ruang wake slices.  So there is a procedural error because it does not follow the  steps in describing the slices of the building.

 

CONCLUSION

Based on the description that has been previously presented and  the results of the  analysis of  student errors in doing questions on the  third dimension material,  it is concluded that the  mistakes made by students include, namely Conceptual errors  are the  most common type of mistake made by students in answering three-dimensional  material questions, which is about 52%.  Conceptual errors  and Procedural errors  occur due to the low abstraction ability  and  visual  ability of students.  The ability to  abstraction and  visual ability  in question is  the ability to see abstract objects   and represent  those abstract objects  into a  flat plane.

A suggestion that can be used to  overcome mistakes  made by   students in  solving problems in  three-dimensional material  is that teachers should use learning media to  build abstraction knowledge.  students  and guide students in doing questions on  the  third dimension material.   Then for the  next researcher to  be able to identify the type of  student error  from the type of computation and principle.   The goal is to be more specific in analyzing the mistakes  made by students.

REFERENCES

Agustin, K., & Linguistika, Y. (2012). Identifikasi kesalahan siswa kelas X pada evaluasi materi sifat-sifat bilangan berpangkat dengan pangkat bilangan bulat di SMA Muhammadiyah 2 Yogyakarta. Seminar Nasional Matematika Dan Pendidikan Matematika Di Jurusan Pendidikan Matematika FMIPA UNY.(Online). Eprints. Uny. Ac. Id/8097/1/P-50. Pdf. Diakses, 20.

Aisyah, F. N. K. (2019). Analisis Kesalahan Peserta Didik dalam Menyelesaikan Soal Cerita Matematika Berdasarkan Kriteria Watson. Universitas Kanjuruhan.

Alghadari, F., Herman, T., & Prabawanto, S. (2020). Factors affecting senior high school students to solve three-dimensional geometry problems. International Electronic Journal of Mathematics Education, 15(3), em0590.

Ananda, R. P., Sanapiah, S., & Yulianti, S. (2018). Analisis kesalahan siswa kelas VII SMPN 7 Mataram dalam menyelesaikan soal garis dan sudut tahun pelajaran 2018/2019. Media Pendidikan Matematika, 6(2), 79–87.

Anggraini, M. V., Sulandra, I. M., & Susiswo, S. (2018). Identifikasi kesalahan soal sistem persamaan linear-kuadrat dua variabel.

Febriana, E. (2015). Profil kemampuan spasial siswa menengah pertama (smp) dalam menyelesaikan masalah geometri dimensi tiga ditinjau dari kemampuan matematika. Jurnal Elemen, 1(1), 13–23.

Hanifah, A. N. (2014). Penggunaan Scaffolding untuk Mengatasi Kesalahan Siswa Kelas VII H SMP Negeri 2 Mojokerto dalam Menyelesaikan Soal Cerita pada Materi Persamaan Linear Satu Variabel. MATHEdunesa, 3(3).

Hidayat, B. R. (2013). Analisis kesalahan siswa dalam menyelesaikan soal pada materi ruang dimensi tiga ditinjau dari gaya kognitif siswa (penelitian dilakukan di SMA Negeri 7 Surakarta kelas X tahun ajaran 2011/2012).

Kurniasari, I. (2013). Identifikasi Kesalahan Siswa dalam Menyelesaikan Soal Geometri Materi Dimensi Tiga Kelas XI IPA SMA. Prosiding Seminar Nasional Matematika Dan Pendidikan Matematika FMIPA UNY, 329.

Novita, R., Prahmana, R. C. I., Fajri, N., & Putra, M. (2018). Penyebab kesulitan belajar geometri dimensi tiga. Jurnal Riset Pendidikan Matematika, 5(1), 18–29.

Solfitri, T., & Roza, Y. (2015). Analisis kesalahan dalam menyelesaikan soal-soal geometri siswa kelas IX SMPN se-kecamatan tampan pekanbaru. SEMIRATA 2015, 1(1).

Utari, E. D. (2019). Analisis Kesalahan Siswa Berdasarkan Watson’s Error Category dalam Menyelesaikan Soal Model PISA Ditinjau dari Gaya Kognitif Field Dependent-Field Independent. UIN Sunan Ampel Surabaya.

Yuniyanti, E. D. (2012). Pembelajaran Kimia Menggunakan Inkuiri Terbimbing dengan Media Modul Dan E–Learning Ditinjau dari Kemampuan Pemahaman Membaca dan Kemampuan Berpikir Abstrak (Pembelajaran Kimia Pada Materi Pokok Kesetimbangan Kimia Kelas XI IPA Di SMA Negeri. UNS (Sebelas Maret University).

Yusnia, D., & Fitriyani, H. (2017). Identifikasi kesalahan siswa menggunakan Newman’s Error Analysis (NEA) pada pemecahan masalah operasi hitung bentuk aljabar. Prosiding Seminar Nasional & Internasional.

Zulfah, Z. (2017). Analisis kesalahan peserta didik pada materi persamaan linear dua variabel di kelas VIII mts negeri sungai tonang. Jurnal Cendekia: Jurnal Pendidikan Matematika, 1(1), 12–16.

Agustin, K., & Linguistika, Y. (2012). Identifikasi kesalahan siswa kelas X pada evaluasi materi sifat-sifat bilangan berpangkat dengan pangkat bilangan bulat di SMA Muhammadiyah 2 Yogyakarta. Seminar Nasional Matematika Dan Pendidikan Matematika Di Jurusan Pendidikan Matematika FMIPA UNY.(Online). Eprints. Uny. Ac. Id/8097/1/P-50. Pdf. Diakses, 20.

Aisyah, F. N. K. (2019). Analisis Kesalahan Peserta Didik dalam Menyelesaikan Soal Cerita Matematika Berdasarkan Kriteria Watson. Universitas Kanjuruhan.

Alghadari, F., Herman, T., & Prabawanto, S. (2020). Factors affecting senior high school students to solve three-dimensional geometry problems. International Electronic Journal of Mathematics Education, 15(3), em0590.

Ananda, R. P., Sanapiah, S., & Yulianti, S. (2018). Analisis kesalahan siswa kelas VII SMPN 7 Mataram dalam menyelesaikan soal garis dan sudut tahun pelajaran 2018/2019. Media Pendidikan Matematika, 6(2), 79–87.

Anggraini, M. V., Sulandra, I. M., & Susiswo, S. (2018). Identifikasi kesalahan soal sistem persamaan linear-kuadrat dua variabel.

Febriana, E. (2015). Profil kemampuan spasial siswa menengah pertama (smp) dalam menyelesaikan masalah geometri dimensi tiga ditinjau dari kemampuan matematika. Jurnal Elemen, 1(1), 13–23.

Hanifah, A. N. (2014). Penggunaan Scaffolding untuk Mengatasi Kesalahan Siswa Kelas VII H SMP Negeri 2 Mojokerto dalam Menyelesaikan Soal Cerita pada Materi Persamaan Linear Satu Variabel. MATHEdunesa, 3(3).

Hidayat, B. R. (2013). Analisis kesalahan siswa dalam menyelesaikan soal pada materi ruang dimensi tiga ditinjau dari gaya kognitif siswa (penelitian dilakukan di SMA Negeri 7 Surakarta kelas X tahun ajaran 2011/2012).

Kurniasari, I. (2013). Identifikasi Kesalahan Siswa dalam Menyelesaikan Soal Geometri Materi Dimensi Tiga Kelas XI IPA SMA. Prosiding Seminar Nasional Matematika Dan Pendidikan Matematika FMIPA UNY, 329.

Novita, R., Prahmana, R. C. I., Fajri, N., & Putra, M. (2018). Penyebab kesulitan belajar geometri dimensi tiga. Jurnal Riset Pendidikan Matematika, 5(1), 18–29.

Solfitri, T., & Roza, Y. (2015). Analisis kesalahan dalam menyelesaikan soal-soal geometri siswa kelas IX SMPN se-kecamatan tampan pekanbaru. SEMIRATA 2015, 1(1).

Utari, E. D. (2019). Analisis Kesalahan Siswa Berdasarkan Watson’s Error Category dalam Menyelesaikan Soal Model PISA Ditinjau dari Gaya Kognitif Field Dependent-Field Independent. UIN Sunan Ampel Surabaya.

Yuniyanti, E. D. (2012). Pembelajaran Kimia Menggunakan Inkuiri Terbimbing dengan Media Modul Dan E–Learning Ditinjau dari Kemampuan Pemahaman Membaca dan Kemampuan Berpikir Abstrak (Pembelajaran Kimia Pada Materi Pokok Kesetimbangan Kimia Kelas XI IPA Di SMA Negeri. UNS (Sebelas Maret University).

Yusnia, D., & Fitriyani, H. (2017). Identifikasi kesalahan siswa menggunakan Newman’s Error Analysis (NEA) pada pemecahan masalah operasi hitung bentuk aljabar. Prosiding Seminar Nasional & Internasional.

Zulfah, Z. (2017). Analisis kesalahan peserta didik pada materi persamaan linear dua variabel di kelas VIII mts negeri sungai tonang. Jurnal Cendekia: Jurnal Pendidikan Matematika, 1(1), 12–16.

 

 

 

Copyright holders:

Wandy Suhady, Yenita Roza, Maimunah (2023)

First publication right:

Devotion - Journal of Research and Community Service

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International