Development of E-Commerce Website Recommender System Using Collaborative Filtering and Deep Learning Techniques
DOI:
https://doi.org/10.36418/devotion.v4i2.417Abstract
Recommender system or recommendation system is becoming an increasingly important technology on e-commerce websites to help users find products that suit their preferences. However, the growing number of users and products makes finding the right product difficult. Therefore, this study aims to develop a recommender system on e-commerce websites using collaborative filtering and deep learning techniques. Collaborative filtering is used to find similarities between users based on their preferences, while deep learning is used to improve the performance of the recommender system in generating more accurate recommendations. The test method is carried out by comparing the performance of the recommender system developed with the recommender system that already exists on the e-commerce website. The results of the test show that the recommender system developed is able to provide recommendations that are more accurate and more in line with user preferences compared to the existing recommender system.
Published
Issue
Section
License
Copyright (c) 2023 Medika Oga Laksana, Isma Elan Maulani, Siti Munawaroh

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International. that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.